

SPACE DATA A S S O C I A T I O N www.space-data.org

User Group Meeting Industry Session

10 March 2014

Morning Agenda SDA Members Only (14:00-16:00)

- Welcome and Logistics
- Overview of Past Year
- SDA Future Plans
- Case Study: Star One
- Current Activities
 - SDC Rehost to Amazon Cloud
 - RFI Enhancements
 - Carrier ID (CID)
 - FDS Topics
- SDA & JSpOC Complementary Services
- Space Insurance
- **Q&A**

What is the Space Data Association?

- The Space Data Association (SDA) is a not-for-profit association formed by and for satellite operators to provide reliable and efficient data-sharing critical to the safety and integrity of the space environment and the RF spectrum.
- The SDA was founded by Inmarsat, Intelsat and SES

 three of the leading global satellite communications
 companies. These three companies, plus Eutelsat, now
 form the Executive Board of the SDA.

"Safety of Flight"

Definition: The condition where satellites are positioned and operated in a manner that preserves their long-term operational viability and the preservation of the orbital regime(s) involved

SDA Charter

 Seek and facilitate improvements in the safety and integrity of satellite operations through wider and improved coordination between satellite operators

 Seek and facilitate improved management of the shared resources of the Space Environment and the RF Spectrum

SDA Current Participants

Multi-national, open to all space operators, in all orbital regimes

- 24 contributing operators
- 3 civil satellite operators

Space Data Center Current Participation

- 3 civil satellite operators
- 23 participating operators
- 118 LEO/MEO satellites from 7 operators
- 241 GEO satellites from 18 operators

Space Data Association Membership

Executive Directors

 Eutelsat (Mark Rawlins), Inmarsat (John Mackey), Intelsat (Ron Busch) and SES (Stewart Sanders)

Standard Member Director

- Astrium (Philip Wadey)
- StarOne (Erika Antonio De Souza Rossetto)

Including FOC participants

- 241 GEO satellites from 18 operators
- 118 LEO/MEO satellites from 7 operators
- Approx. 57% of GEO satellites processed in SDC through operator data

Space Data Association System and Process Support

SDA Technical Advisers

- SDC Oversight (Paul Welsh, AGI)
- SDC Operations Manager (T.S. Kelso, Ph.D, AGI/CSSI)
- SDC Program Manager (Dan Oltrogge, AGI/CSSI)

SDA Ltd. Administration

- Corporate & Membership Administration Services (Ian Jarritt, ManSat, IoM)

Legal/Strategy/Government Policy

 Andrew D'Uva (SDA), Myland Pride (IGC), William Blunt (SES), Denise Olmsted (Intelsat), Paul Welsh (AGI)

Flight Dynamics

Dean Hope (Inmarsat), Joe Chan (Intelsat), Pascal Wauthier (SES), David Zamora (Eutelsat)

RF Interference

 Steve Smith (SES), Ron Busch (Intelsat), Chris Ashton (Inmarsat), Mark Rawlins (Eutelsat), Patty Harrison (Intelsat)

This list is not exhaustive and the SDA requires the active support of its members. Many are involved in multiple activities so please feel free to volunteer to help.

SDA Users Meeting: SDA General Forum

SDA FUTURE PLANS RON BUSCH

Space Data Association Objectives for 2014

SDA

- Grow Membership
- Develop Government and Industry Relationships
- Develop Space Insurance Relationships
- Secure Access to Additional Data Sources

SDC

- Reduce Operating Costs and Improve Service
- Implement Data Sharing for RFI Mitigation
- Carrier ID Database

SDA Future Consideration

Space Weather

- Improved data distribution & alerts
- Controlled sharing of proprietary data
- Improved modeling with feedback
- Carrier ID Database
 - Supports RFI initiative of other industry bodies (sIRG, EUI)

Space insurance

 Secure preferred terms for SDA members based on better management of risk

SDA Future Challenges

Data Sources

- SDA/SDC built on user data, including 'future knowledge'
- Full catalogue requires additional data:
 - Increase participation >>> 100% of satellite operators
 - Access other data sources to fill gaps and verify existing
- Increasing tracking capabilities/data is key

Funding

- SDA is funded solely by participants
- Funding levels limit future developments
- External funding could affect independence
- Fee-paying 'added value' service models considered

SPACE DATA A S S O C I A T I O N

How Star One keeps its fleet safe Erika Rossetto

March, 10 2014 SDA User's conference

Introduction

Customers ask about space surveillance

Space debris should be a concern for all satellite operators

A atreat ob adremat

noticias / espaço Vem aí o 'lixeiro' do espaço

🖾 envie por e-mail 🛛 🖾 compartilhe 🛛 💩 imprima

Comer 3 2mmQ +1 33
Satélite suiço recolherá loso espacial; ele terá tentáculos para recolher peças e pedaços de foguetes
abandonados na ótba tarreste
por De Redeção

The Rise of Chinese Space Junk

By Wilson VornDick

September 16, 2013

🔊 🖂 EMAIL

Most orbital debris is U.S. or Russian in origin. But China's space program exacerbates an urgent issue.

In one of this fall's most anticipated blockbusters, *Gravity*, an astronaut duo played by George Clooney and Sandra Bullock are left adrift in space after their shuttle is destroyed. The culprit is Hollywood's newest villain: space debris. Unfortunately for present day astronauts, this is not just Hollywood's febrile imagination at work. As innocuous as it may sound, space debris is extremely hazardous and could even be lethal. In fact, the National Aeronautical Space Administration (NASA) has initiated an

RELATED FEATURES

Beginning to worry

- In 2003, Telstar 402R failed in orbit and passed by several satellites with risk of collision, including Brasilsat B4 (in 92°W at that time).
 - In 2000 Star One started to receive ephemeris from 2 Sirius satellites.

Watching systematically

an Embratel compan

 In 2006, Star One joined SOCRATES (Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space). It was a service from the Center for Space Standards & Innovation (CSSI), which provided reports twice a day, notifying satellite operators about close approaches with their satellites. Later, SOCRATES was incorporated into the Space Data Center (SDC), maintained by the Space Data Association (SDA).

	euon	MEI	neur	Æ

	2006, June 23 rd	SOCRATES predicted an approximation of 3.5 km between B4 and Telstar 402R for Jun 30 th
	June 29 th	Star One executed a Mitigation maneuver
>	Jun 30 th	Separation distance increased to 10.5 km

Joining SDA

 In 2011 Star One decided to join SDA in order to keep the systematic space surveillance;

 Initial challenges: ephemeris format, automatic upload, data quality and analysis;

How SDA Helps Us

Frequent Conjunction reports

Satellites	Cross-Track (km)	In-Track (km)	Radial (km)	Meridian (km)	Time of Approa	Closest ch(UTC)	Start Dat End Date	e (UTC) (UTC)	Duratio (sec) Probabi	n lity	Minimal Ra (km)	nge	Screening Threshold (m)		
		STAR ONE	E C3 (38991):	2012-062A)	Ephemeris	2013-09-2	26 18:12:41	Erika Ros Evandro Giovanni Henrique Mauricio MECCEL Reinaldo Wallace F	ssetto Paiva Ferreira Almeida Bottino STARONE Silva Ferreira	55212 55212 +552 55212 55212 +552 +552	1214.05 1219373 121217003 1214450 1212736 121212990 121212703	ccse epai gani riqui botii mec reisi walf	@starone.com.br va@starone.com.br ii@starone.com.br aa@starone.com.br oo@starone.com.br v@starone.com.br er@embratel.com.br	-	Information
		GOES 13	Name (29155 2006 [.]	-018A)	Data Type Ephemeris	Last Uplo 2013-09-2	bad 25 20:18:07	Name Casey Th Kevin Wo Steven H	nomas ork ładesty	+1-30 +1-30 +1-30	1-817-4239 1-817-4024 1-817-4042	Con Case Kevi Stev	tact E-mail :y.thomas@noaa.gov n.Work@NOAA.gov :en.Hadesty@noaa.gov		Information
(38991 2012-002A)							09:55:51.	351	007						Contact
STAR ONE C3	-15.5948	-5.8732	8.4722	17.7475	05:17:17	20	2013-09-2	8	7.392446	E-	18.6941		50000.0000		
GOES 13 (29155 2006- 018A)	15.5895	5.8777	-8.4787	17.7461	2013-09-	-28	2013-09-2 00:00:00.	8 000	35751.35	608					

Satellites	Cross-Track (km)	In-Track (km)	Radial (km)	Meridian (km)	Time of Closest Approach(UTC)	Start Date (UTC) End Date (UTC)	Duration (sec) Probability	Minimal Range (km)	Screening Threshold (m)
STAR ONE C3 (38991 2012-062A)	-1.2741	-16.2123	11.8303	11.8987	.8987 2013-09-28 201.7964 2013-09-28 201.7964 20.1101		20.1101	50000 0000	
LES 6 (03431 1968- 081D)	-1.1256	16.2187	-11.8365	11.8899	01:59:52	2013-09-28 02:01:33.877	6.388048E- 007	20.1101	50000.0000

How SDA Helps Us

Analysis options

a

an Embratel company

	Latest Ephemeris Files Uploaded To view more items, click the page numbers at the bottom of the page.											
File ID	Submission Date (UTC)	Satellite	Processing Status	Ephemeris Type								
2009946	2013-10-11 14:35:30	STAR ONE C3 (38991 2012-062A)	Completed	Operational	🗄 🌠 🗶 D							
1987226	2013-10-08 20:39:21	BRASILSAT B2 (23536 1995-016A)	Completed	Operational	🗄 🌠 🗶 D							
1986456	2013-10-08 19:41:56	BRASILSAT B3 (25152 1998-006A)	Completed	Operational	📥 🎋 🗶 D							

D	Satellites	Radial (km)	In-Track (km)	Cross-Track (km)	Meridian (km)		_
	STAR ONE C2 (32768 2008-018B)	35.9346	-2.6444	-5.0713	36.1907	Ē	
\geq	TELSAT 16 (IS-16) (36397 2010- 6A)	-35.9354	2.6432	5.0665	36.2908	Ē	

Approved for public release

Neighborhood Watch list, very helpful for colocated satellite

Primary Satellite	Neighbor Satellite
BRASILSAT B2 (23536 1995-016A)	TELSTAR 14R (37602/2011-021A)
STAR ONE C3 (38991 2012-062A)	GOES 13 (29155/2006-018A)

an Embratel company

How SDA Helps Us

neighborhood watch

How SDA Helps Us

an Embratel company

JSpOC analysis also used to improve conjunction analysis

Below are the latest CSM analysis results for STARONE (as of 2013 Oct 09 @ 13:18 UTC):

- 1 new CSM(s) downloaded
- 1 CSM(s) analyzed
- 0 CSM(s) skipped because they were more than 24 hours old

JSpOC Unique ID 101328235350

Creation Date: 2013-10-09 09:45:54 UTC (3.5 hours ago)

Upload Time: 2013-10-09 12:01:37 UTC (1.3 hours ago)

CSM min r	ange at TCA	(2013-10-21 18:20	(42.202 LTC) = 8.979 km
001111111	Epheme	eris vs. CSM/TLE C	Comparison
Primary	CSM Rang	je at TCA: 119.345 km	TLE Range at TCA: 98.275 k
Primary ephe	meris epoch	: 2013-10-07 00:00):00.000 UTC (2.55 days old)
	CS	M vs. TLE Compar	risons
Primary Rang	e at TCA: 21	.789 km Secon	dary Range at TCA: 2.960 km
	CSM	Conjunction Com	parisons
CSM vs.	CSM	TCA: 2013-10-21	18:29:42.202 UTC, 8.979 km
Ephemeris	vs. CSM	TCA: 2013-10-21	18:29:38.098 UTC, 115.356 k
Ephemeris	vs. TLE	TCA: 2013-10-21	18:29:37.747 UTC, 116.497 k
Ephemeris vs.	Ephemeris		N/A
	Con	nplete AGI Viewer S	cenario

• No ephemeris available for secondary

Approved for public release

21

After our first OD evaluation we detected a systematic error in our system.

Approved for public release

an Embratel company

How SDA Helps Us

Launch support

an Embratel company

Satellites	Cross- Track (km)	In- Track (km)	Radial (km)	Meridian (km)	Time of Closest Approach(UTC)	Start Date (UTC) End Date (UTC)	Duration (sec) Probability	Minimal Range (km)	Screening Threshold (m)
Star One C3 Launch (77760 2012- 314L)	1.352	0.1988	- 3.0914	3.3742	2012-11-11	2012-11- 11 23:48:47	67.6514	3.3800	50000.0000
KIZUNA (32500 2008- 007A)	- 1.3585	- 0.1516	3.0913	3.3766	23:49:20	2012-11- 11 23:49:54	1.159214E- 006		

Satellite Name	Data Type	Last Upload	Name	Contact Phone	Contact E-mail
Star One C3 Launch (77760 2012-314L)	Ephemeris	2012-11-09 23:47:39	Erika Rossetto Evandro Paiva Giovanni Ferreira Henrique Almeida Mauricio Bottino MECCEL STARONE Reinaldo Silva Wallace Ferreira	552121214436 552121219373 +552121217003 552121214450 552121212736 +5521212122990 +552121212703 552121219109	ccse@starone.com.br erisouz@starone.com.br gani@starone.com.br riqueal@starone.com.br botino@starone.com.br meccel@starone.com.br reisilv@starone.com.br wallfer@starone.com.br
KIZUNA (32500 2008-007A)	TLE	2012-11-09 16:19:47			

Conclusion

- Star One relies on SDA and considers it as the best space surveillance system;
- Over last years SDA has been very helpful for our operations.
- We strongly recommend any operator to join SDA.

Thank you!

SDA Users Meeting: SDA General Forum

STATUS OF SDC AND THE SDC PLUGIN DAN OLTROGGE

Space Data Center (SDC)

The SDC is the processing system of the SDA

SDC – Three Key Mission Areas:

- Collision avoidance monitoring (Conjunction Assessment)/ Manuever Planning Validation / Flight Safety
- Radio Frequency Interference mitigation / Geolocation support
- Contact information (operations center) for SDA Member objects

SDC reliable and secure operation:

- Tertiary, geographically separated redundancy
- High level data security and encryption
- Best practice Information Assurance (IA) based on standards for high level computing systems

Introduction

The Space Data Center will provide regular information on pending conjunctions on orbit over the coming week. Because of the potentially catastrophic consequences of such conjunctions going unnoticed, it is hoped that this service will help satellite operators avoid undesired close approaches through advanced mission planning.

The current system time is Thu, 2012 Mar 08 14:23:16 UTC.

Dr. T.S. Kelso • SDC Operations Manager

- 🧧 sdc-support@agi.com
- OpaceDataCenter follow SpaceDataCenter on Twitter

Latest News

SDC Transition to Amazon Cloud

- Substantial hosting provider cost reduction
- March/July 2014 SDC switchover to Amazon
- Multi-region (continent), dual-AZ topology
 - Amazon AWS regions are separate geographic areas
 - Each region has multiple, isolated locations known as Availability Zones, connected by low-latency links.

FGUA

- Fundamental re-tooling of the SDC user permissions regime
- Enable users to authorize other user's access to first user's data under controlled circumstances
- Incorporate flexibility to allow a variety of rules, workflows, permission time intervals, etc.
- Permissions specified at the granular level
 - by user, by satellite, by discipline
 - Sunset expirations of granted permissions

SDC Plugin

 SDC Plugin provides easy access to user-friendly, tailored analysis of SDA member data

- Augments SDC rich repository of SOAP and REST web services for automated machine-to-machine interface
- Allows SDC users to obtain any/all SDC data they are authorized to access
 - SDC ephemerides and maneuvers populated by operators
 - SDC RF parameters and RFI alerts to be populated as well.
 - Automatically ingests JSpOC CSMs and performs 9-way comparisons of conjunctions and two 3-way positional compares
- SDC Plugin released January 2013
 - *Free* to SDA members; requires business-level STK-Pro license

SPACE DATA A S S O C I A T I O N

RFI FUNCTIONS FOR SDC MARK RAWLINS

SDC/RFI – Introduction

- Why share data or automate RFI functions?
 - RF interference is the single most important operational problem affecting customer services on geostationary satellites
 - ~85-90% of customer issues are due to RFI
 - RFI only affects a small amount of capacity (1-2%?) but has a cost and service impact if not resolved
 - Investigation often needs data on other satellites
 - Investigating RFI is time consuming we are always seeking methods and processes to improve response

SDC/RFI – Current RFI Ops Issues

- Overview of the current RFI process
 - Operators need contact details for other operators
 - No existing industry-wide database with reliable contact info
 - Operators need help and information
 - RFI Alert function, to seek assistance exists today with sIRG email distribution – but need enhanced functions
 - To get information on other operator's payload, have to know who to contact
 - In-house knowledge, not documented
 - Tremendous experience, but not captured, not shared internally, let alone with other operators
 - Cooperation with other satellite operators
 - Geolocalisation using other operator satellites information exchanged "manually".

SDC/RFI – Geolocalisation Support Why do I think that this is good for my operations?

What am I looking for?:

- 1. Reduced time to solution
- 2. Less manpower for the same result
- 3. Higher precision
The Geolocalisation Scenario

Monitoring station(s) see note 2

A Reference signal See note 1

- 1. A reference signal that shares the same RF hardware on the satellite and is located in the uplink are of both satellites
- 2. The monitoring station(s) need to be able to receive the signals from both areas. These may be in different places.
- 3. The other satellite needs to operate at the same frequency and a similar coverage area.

If the other satellite does not belong to us we need to know the following:

- The cross strapping
- The coverage areas
- The frequency conversion
- The frequency bands
- The ephemeris data

We go from this scenario...

"Hello Andreas, sorry we have nothing at that position, you'll have to try Russ" By the way do you know what time it is here?

To this....

Data Secure, but available

The SDC provides this:

- Access to the specific data needed to geolocalise
- Available 24/7
- Legally binding conditions for data use

- One stop shop for the information all the data needed for geolocalisation in one place.
- Always on don't need to wait to get the data in an informal manner
- Higher precision Operator provided ephemeris up to date and verified
- \checkmark A secure environment for sharing data

Summary

 \checkmark Machine to machine data exchange.

SDA Users Meeting

RFI FUNCTIONS FOR SDC Patty Harrison

SDC/RFI – Introduction

- Interactive functions to actively help operations
 - RF data for interference geolocalisation
 - Fly-by RFI predicts for LEOP and drifting satellites

Reference functions

- Contacts database/Phonebook
- RF Interference Alerts
- RF Interference case study database
- Carrier ID database

Why should SDC provide these functions?

It already contains precise ephemeris data for geolocalisation
Approved for public release

SDC/RFI – Interactive Functions

RF Data and Geolocalisation

- Members provide current RF payload (transponder) frequencies, polarizations, connectivity, satellite antenna patterns, reference carriers (data needs to be updated regularly to ensure accuracy)
- SDC will use payload data to find best 'pairing' of primary and adjacent satellites to match geolocalisation requests from members
- SDC will provide a 'dataset' of the required parameters to feed into the member's geolocalisation system
- Benefit: SDC computes optimum pairing of satellites for selection by the member; provides data formatted for the geolocalisation system; data immediately available for geolocalisation

Drifting satellites and LEOP (Fly-by)

- CA predicts fly-bys; TT&C frequencies predict RFI
- Benefit: Analysis and Automatic alerts for potential fly-by RFI

SDC/RFI – Reference Functions

Contacts (Phonebook)

- SDC has a phonebook database. Members can enter their own contacts (e.g. 24x7 center, technical managers, support staff, etc.)
- Benefit: Member-maintained, single reliable contacts database

RFI Alert (seeking information and assistance)

- Structured Alert message can be issued to selectable distribution
- Data and messages can be saved and searched
- Feedback provided to the distribution when event is solved
- **Benefit:** Focused distribution; message tracking; feedback

RFI Database (historical information, case studies)

- Stores RFI Alerts, case studies, white papers, etc.
- Assign tags, keywords, to aid searching
- Benefit: Members can search RFI events, find useful information

SDC/RFI – Data From Members

RF Payload Data:

- Data describing transponders and connectivity (<u>not</u> customer carrier data): Frequencies, polarizations, connectivity, beam antenna pattern data, reference carrier freq/pol/location/bw
- Drift and LEOP:
- Contacts:

• **RFI Alert:**

• **RFI Database**:

TT&C data for satellites: Beacon, command and telemetry frequencies, cmd eirp

For RF Payload teams: Name, email, phone, role (24x7, mgmt, ops center, etc.)

Information describing an event, or information you need: Affected s/c, transponder, connectivity, freq, RFI characteristics, attach plots as needed, comments

Similar data as for 'RFI Alert", for historical reference: Info describing an event, investigation performed, resolution, techniques, test equip, poor vendor equip list

SDA Users Meeting

CARRIER ID DATABASE Steve Smith

What is Satellite Operator CIDB ?

- The Satellite Operator Carrier ID dataBase (CIDB) is a centralized data repository for all satellite operators to use at no charge to store & search for Unique Carrier IDs
 - Associates Carrier IDs w/satellite operators
 - Facilitates rapid RFI mitigation for cooperating operators

Satellite Operator CIDB Status

- SDA Board approved hosting of CIDB
- High level CIDB requirements are drafted
- CIDB mock-up developed by AGI and demonstrated to satellite operators at Oct 2013 sIRG Conference in Brazil
- The SDA has a requirements team overseeing RFI/CID functional development, and will work with sIRG CID WG

Satellite Operator CIDB Schedule

Industry timeline (WBU-ISOG Resolutions):

2014 – World Cup (June)

- Encouraging use of CID for broadcast video
- Allow operators to demo processes and CIDB database
- 2015 (demonstration and initial deployment)
 - Uplink customers deploy DVB-CID-ready equipment
 - Operators implement CID detection and decoding
 - Operators finalize CIDB & processes
- 2015 2017 (Implementation of CID continues)
 - Phase out interim CID-NIT format
 - 31 Dec 2017: DVB-CID globally operational

FCC Ruling (as of February 2014)

I June 2016 – SNG uplinks to use DVB-CID

Carrier ID Tour at Sat 2014...

To get more information

Come and join the CID Tour!

- Being conducted at Sat2014 conference at the following times...
- Can email press@satirg.org for more information

Here is the full schedule for the CID Tour at Satellite 2014. Each tour will begin at the L Street Bridge

<u>Tuesday 11th</u>

2pm – CID Tour

4:15 pm – CID Tour

5pm – Integrasys Workshop

Wednesday 12th

10am – CID Tour

2.30pm – CID Tour

4:30pm – CID Tour

Thursday 13th

9:30 – 4:30 pm -Interference prevention summit

No tour on this day

For further information, please contact press@satirg.org

To book a place on the tour, please fill in the form below.

SDA Users Meeting: General Forum

FLIGHT DYNAMICS TOPICS FOR SDC JOE CHAN

Current SDA Conjunction Monitoring Process

Space Data Association

- Cooperated with other satellite owners/operators orbit ephemeris including maneuver effects
- TLE to supplement drifters and non-cooperated satellites
- Conjunction alerts currently based on miss-distances only
- Monitoring to 7 day time span

Monitoring strategy

- Single Tier system for member satellites
 - Actionable alerts
 - Efficient responses and coordination
 - Reduce (eliminate) false alarms
- Two Tier system with non-cooperative satellites and drifters
 - Alerts based on TLE and validation via JSpOC Form-1 process with member ephemeris data

Current Services Provided by SDA (1/3)

- Conjunction Assessment (CA) to analyze and warn of close approaches between a member's satellite and other space objects
 - On-station, LEOP and Satellite Relocation

Neighborhood watch program to monitor collocating satellites with different members and within the same operator

Spacedatacenter Serving the satellite operator community										
Welcome Joseph Chan Sign Out Home Administration About Help Phone Book										
Epi	Ephemeris Data Maneuver Reporting Conjunction Reports RFI Events									
	conjunction reports 🛛									
Conjunction Reports To view more items, click the page numbers at the bottom of the page.										
ID	Source	Analysis Start Date (UTC)	Analysis Stop Date (UTC)	Status	# of Satellites					
46316	Scheduled Run	2013-10-08 14:00:00.000	2013-10-15 14:00:00.000	Estimated start time: 2013-10-08 14:00:00	0					
46306	Scheduled Run	2013-10-08 12:00:00.000	2013-10-15 12:00:00.000	Completed: 2 min 41 sec	15571					
46296	Scheduled Run	2013-10-08 10:00:00.000	2013-10-15 10:00:00.000	Completed: 2 min 46 sec	15571					
46286	Scheduled Run	2013-10-08 08:00:00.000	2013-10-15 08:00:00.000	Completed: 3 min 2 sec	15571					
46276	Scheduled Run	2013-10-08 06:00:00.000	2013-10-15 06:00:00.000	Completed: 3 min 6 sec	15574					

Current Services Provided by SDA (2/3)

Current Services Provided by SDA (3/3)

Recently provided to JSpOC and was corrected

Value Added Services

 Plug-in to interface with Conjunction Summary Message (CSM) for members to provide added value conjunction

3:	JSpOC Unique ID xxxxxxx							
	8-14 10:24:41 UTC (2.5 hours ago)							
	Upload Time: 2013-08-14 12:43:11 UTC (0.2 hours ago)							
	or SatA and SatB							
	CSM Conjunction Comparisons							
	CSM vs. CSM	TCA: 2013-08-24 16:54:09.485 UTC,						
	COM V3. COM	9.991 km						
	Enhemeris vs. CSM	TCA: 2013-08-24 10:26:54.584 UTC,						
		43.677 km						
	Enhemeris vs. TI E	TCA: 2013-08-24 18:00:13.493 UTC,						
	Ephemens V3. TEE	7.927 km						
	Enhemeris vs. Enhemeris	TCA: 2013-08-24 09:17:23.031 UTC,						
	Epitemens vs. Epitemens	62.633 km						

Current State of Conjunction Monitoring

- Space Data Association (SDA)
 - Member orbit ephemeris including maneuver effects
 - TLE to supplement drifters and non-cooperated satellites
 - Conjunction alerts currently based on miss-distances only
 - Single Tier system for member satellites
 - Two Tier system with non-cooperative and drifters
- JSpOC Support
 - Conjunction monitoring using special perturbation (SP) data
 - Conjunction alerts based on miss-distances only
 - Automatic email to operators and via. online CSMs
 - Two Tier System with SP data and validated via Operator Ephemeris data

Missed Close Conjunction (1/2)

The satellites

- XXXX Active satellites
- YYYY Non-active Rocket Body

Creation Date: 2013-10-23 09:24:34 UTC (3.4 hours ago)

Upload Time: 2013-10-23 11:47:47 UTC (1.0 hours ago)

Conjunction for XXXX and YYYY					
CSM vs. CSM	TCA: 2013-10-26 08:31:43.139 UTC, 7.567 km				
Ephemeris vs. CSM	TCA: 2013-10-26 08:32:08.832 UTC, 3.343 km				
Ephemeris vs. TLE	TCA: 2013-10-26 08:32:08.802 UTC, 3.425 km				

Missed Close Conjunction (2/2)

The satellites

- SatA: Active satellite with low thrust engines and maneuvers loaded onboard
- SatB: Decommissioned non-active satellites (drifter)

Screening	Screening SatA		Separations (km)	Notes	
SDA Ephemeris		TLE	14.0	Bad SatB TLE	
JSpOC	SD.	SP	> 10	SatA SP did not include planned	
	38			maneuvers	
Request	Faboneric	SP	0.6	SatA ephemeris included planned	
	Ephemens			maneuvers	
Request	Ephemeris	SP	3.9	Cancelled loaded maneuvers	
JSpOC	SP	SP	3.3	Additional Tasking (~ 12 hours) and	
				cancelled loaded maneuvers	

Multiple Tiers monitoring is not efficient nor sufficient

SDA Users Meeting: SDA General Forum

SDA & JSPOC COMPLEMENTARY SERVICES ANDREW D'UVA, DAN OLTROGGE

SDA or JSpOC ? That's The Wrong Question ...

Myths:

- JSpOC CA services cover all risks, so participating in SDA is not necessary for operators already working with JSpOC
- SDA's services cover all risks, so participating in JSpOC's CA services has no utility either
- TLEs on space-track.org are useless for CA processing by SDA

Reality:

- As of now, neither JSpOC nor SDA are using (or are able to access and use) all of the best orbital data for CA
- Participating in <u>both</u> SDA and JSpOC CA processes prudent
 - Even U.S. government does so: NASA, NOAA
- Not to mention geolocation... where accurate ephemeris really matters

SDA AND JSpOC – The Right Answer for Responsible Operators

- Lots of technical data and historical evidence available, but the bottom line is:
 - CSMs are not 'actionable' per the JSpOC; simply a 'heads up' for all to start analysis
 - JSpOC does not process all owner-operator advance maneuver data and measured ephemeris contributed by operators, but has access to some debris and object data SDA lacks
 - JSpOC has access to some data that SDA does not
 - SDA has access to some data JSpOC does not
 - SDA working to ensure that everybody's limited resources in this area are used to best effect
 - SDA CA warnings and tools also aid analysis
 - SDA provides unparalleled SDA/JSpOC comparisons to minimize Flight Dynamics Staff (FDS) workload

SDA AND JSpOC – The Right **Answer for Responsible Operators**

- JSpOC new "Enhanced General Perturbations" TLEs
- The SGP orbit theory of TLEs sufficient accuracy for SSA
 - At 1-day maneuver decision point:
- Enhanced SGP Median Positional Error vs Circular Orbit Altitude /dav +6 Days from EGP OD Epoch Performance 14 +4 Days from EGP OD Epoch degrades sharply revs/ +2 Days from EGP OD Epoch +0 Days from EGP OD Epoch below 300 km 12 Positional Error (km) Stats \mathcal{C} 10 SGP theory 8 transitions to deep space at 6 225 min period 4 2 0 20,000 0 000⁽t 8,000 10,000 12,000 4,000 16,000 18,000 22,000 24,000 g 6,000 26,000 8,000 30,000 34,000 GEO 32,000 Circular Orbit Altitude (km) Ramrath/Oltrogge 2013 Maneuver Threshold
- EGP TLE median positional accuracy ≈ 1km at GEO and ≈ 500m at LEO

SDA AND JSpOC – The Right Answer for Responsible Operators

Impact of Maneuvers

- JSpOC technology has difficulty detecting and reflecting maneuvers (fitting orbits, up to seven day lag) – owner/operators have best data on their actions
- SDA excels at operator-vs-operator analysis
- Supporting operators is SDA's only priority

So why use JSpOC at all?

- Unparalleled 'non-cooperative tracking' sensor network (Space Surveillance Network)
- It helps to build a common picture to the benefit of all
- SDA will keep looking for ways to work with JSpOC ; it's responsible and prudent to start now
- It's "free" (i.e., U.S. taxpayer funded)

WHY SPACE INSURANCE MATTERS

CHRIS KUNSTADTER • XL INSURANCE • MARCH 2014

XL Group plc is...

- A publicly traded company (NYSE stock symbol: XL)
- Total assets of \$45.7 billion (as of 31 December 2013)
- Shareholders' equity of \$11.4 billion (as of 31 December 2013)
- Ratings: S&P: A+ (strong) / stable, A.M. Best: A (excellent) / stable
- 60 offices in 25 countries
- Through its subsidiaries, a global provider of:
 - Insurance and reinsurance
 - Specialized commercial risk management solutions
- XL Aerospace is a leading provider of insurance and risk management services to the aerospace, telecommunications, and related industries worldwide
 - XL has worked on numerous launch vehicle and satellite failure review boards and industry working groups
 - XL has unique capabilities in space

What Is Space Insurance?

- Coverage for first-party losses (e.g., loss of asset, business interruption) for satellite operators and users, satellite manufacturers, and launch providers, during launch, initial operations, and on-orbit operations
 - Includes virtually all of the technical risk of the space segment, from launch onwards
 - Generally covers all risks, with few exclusions (*e.g.*, war, nuclear, terrorism)
 - Generally covers losses due to environmental hazards (e.g., space debris, space weather)
- Small population of risks + high severity = volatility of results
- Overcapacity in space insurance
- Unique underwriting challenges

What Keeps Us Up At Night

> Operations

- Environment debris, solar activity, interference
- External threats intentional and unintentional
- > On-orbit servicing prox ops
- Hosted payloads liability, cross-impact
- Commercial human spaceflight
- > Cyber unbounded risk

> Systems

- > Technology insertion
- > Test and analysis
- > Counterfeiting
- > Workforce

Commercial

- Global economy shifting alliances
- Market weakness volatility
- Capital allocation
- > Emerging risks

Commercial GEO Satellites In

By operator, insured and uninsured

Orbit

322 satellites among 45 operators

The Way Forward SDA and the insurance community

- Collisions in space are covered under space insurance policies*
 - We want to ensure that all reasonable steps are being taken to avoid collisions
- > EMI and RFI are excluded from space insurance policies*
 - > Typical exclusion language: "This policy does not apply to loss, damage or failure caused by or resulting from...electromagnetic or radio frequency interference, except for physical damage to the Satellite directly resulting from such interference and from interference coming directly from the Satellite."
- Many (typically minor) satellite anomalies reported to space insurers are blamed on space debris
 - Solar array string losses
 - > Attitude disturbances
- * ceteris paribus

- Space insurance market has been profitable over the long-term, but margins are increasingly thin
- Emerging risks, introduction of new applications and technologies, and increasing hazards in the space environment will stress satellite operators, manufacturers, launch providers, end-users and insurers
- Competitive space insurance market demands even more diligent underwriting
- XL's industry involvement allows us to help shape strategy and policy
- > XL encourages satellite operators to participate in SDA

Space for new ideas... ...new ideas for space

Christopher T.W. Kunstadter Senior Vice President XL Insurance +1 212-915-6387 chris.kunstadter@xlgroup.com

Approved for public release

XL

SDA Users Meeting: SDA General Forum

SUMMARY AND CLOSING REMARKS RON BUSCH

Approved for public release

Summary Comments

- SDA has shown that a user owned/managed operational solution is viable and can encourage membership precisely because of its independence.
- The legal framework protection of proprietary data has been critical in encouraging participation.
- SDA has already solved Conjunction Assessment and general processes – the wheel doesn't need to be reinvented – public money is better spent on additional tracking/data sources.
- Physical space and the RF spectrum need better <u>operational</u> management – the SDA is the best means of achieving this.

Approved for public release

Contacts – For Presentation Follow Up

SDA Executive Directors Mr. Ron Busch

Chairman and Director of the SDA VP Network Engineering Intelsat Ron.Busch@space-data.org

Mr. Stewart Sanders Director of the SDA Senior Vice President SES Engineering Stewart.Sanders@space-data.org

Mr. John Mackey Director of the SDA VP Operations Inmarsat John.Mackey@space-data.org

Mr. Mark Rawlins Director of the SDA Head of Payload Engineering & Operations Eutelsat mrawlins@space-data.org

SDC POCs

Mr. Paul Welsh SDC Oversight pwelsh@agi.com 610-981-8004

Mr. Dan Oltrogge SDC Program Manager oltrogge@agi.com 610-981-8616

Dr. T.S. Kelso SDC Operations Manager tskelso@agi.com 610-981-8615

Approved for public release