
History of the SDA/COMSPOC initiative to add RFI Mitigation functionality to the SDC

Dan Oltrogge

Excerpts from EMISSIONS briefing originally presented

at the SDA Users Meeting on 16 March 2015

Multi-Spot Beam Gain Pattern

Aphids Aggregate Multi-Spot Beam (AstroHD) - 2D H-pol, 2342 MHz , SCU scalar , Peak Gain=46.9, Trial #1)

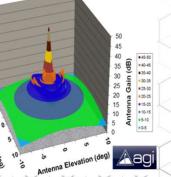
10.0 -7.5

2.5 Ē 0.0

-2.5

-7.5

Aagi


25-30

20-25 15-20 -5.0

10-15

5-10 0-5 -10.0

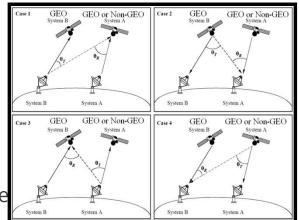
Measured Parabolic Dish Gain Pattern

CSSI

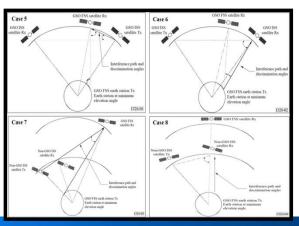
Motivations for SDA's Creation

• Enhance "Safety of flight"

 Definition: The condition where satellites are positioned and operated in a manner that preserves their long-term operational viability, the long-term operational viability of any other satellites, and the preservation of the orbital regime(s) involved

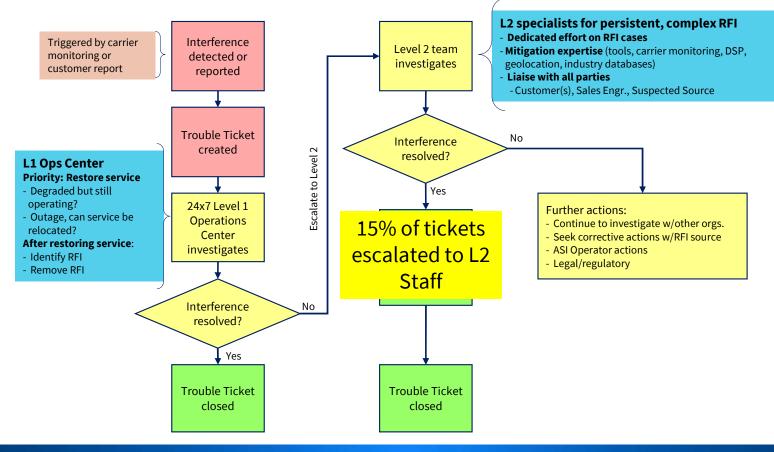

EMI/RFI Geolocation and Resolution Support

- More rapidly find and address interference sources
- Efficient, timely, accurate conjunction assessments
 - Consolidate and use best available data from operators, including planned maneuvers
 - Reduce false alarms, missed events
 - Minimize member time and resources devoted to CA
- SSA / Format Conversions / Information Repository
 - Minimize confusion, potential for conflicting decisions

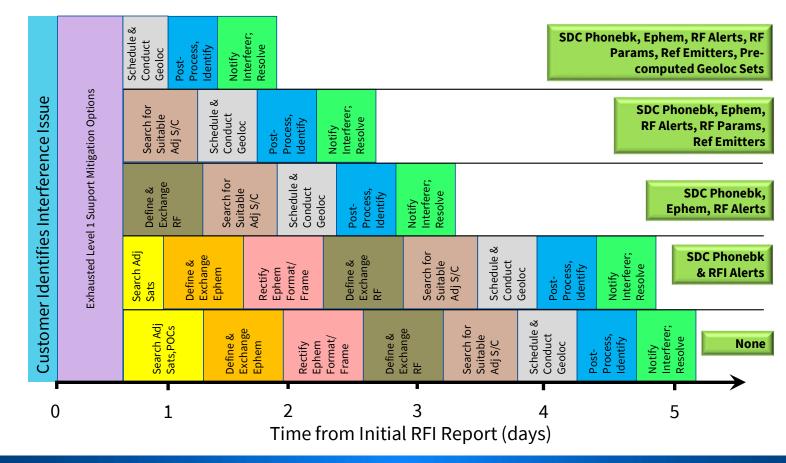

Encourage evolution of best practices for Members SDA Enhances Satellite Operations & Lowers Operational Costs

Most Problematic RFI Paths:

- 2 RFI types difficult to mitigate:
 - Satellites-to/from-Ground
 - Inter-Satellite vs GEO-to-Ground
- RFIs are either unintentional...
 - Bad Equipment, mistaken schedules or polarities, or "Fly-By" (LEOP or drifting) satellite
- or intentional (jamming/DoS)
 - Occurrence of intentional jamming varies by operator and satellite location, but is typically rare (<< 1%)



Source: ITU Recommendation ITU-R S.1526-1

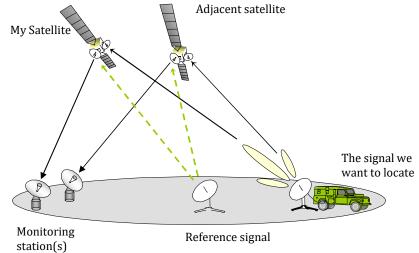

COMSPOC

Typical Operator Workflow for RFI Mitigation

COMSPOC

Summary: Improving RFI Mitigation Timelines

COMSPOC


SDC/RFI – Introduction

RFI background

- RF interference is a major operational problem affecting customer services on geostationary satellites
- ~85-90% of customer issues are due to RFI
- RFI only affects a small amount of capacity but has a cost and service impact if not quickly resolved
- Investigating RFI is time consuming we are always seeking methods and processes to improve response

Geolocation – key mitigation technique

- One of the main techniques used to
- identify interfering signals
- Requires precise satellite ephemeris data
- for 'affected' and adjacent satellites
- Needs RF payload data for 'affected'
- and adjacent satellites

🔞 COMSPOC

SDC/RFI – Geolocation Support

• How can SDC help with geolocation?

- Investigation often needs accurate RF data on other satellites
- SDC already contains the precise ephemeris data
- Need to extend data sharing to include RF payload data
- SDA already has a means of securely holding and exchanging data with the users
- It already has a legal framework to protect user's data

SDC pre-computed geolocation solution sets

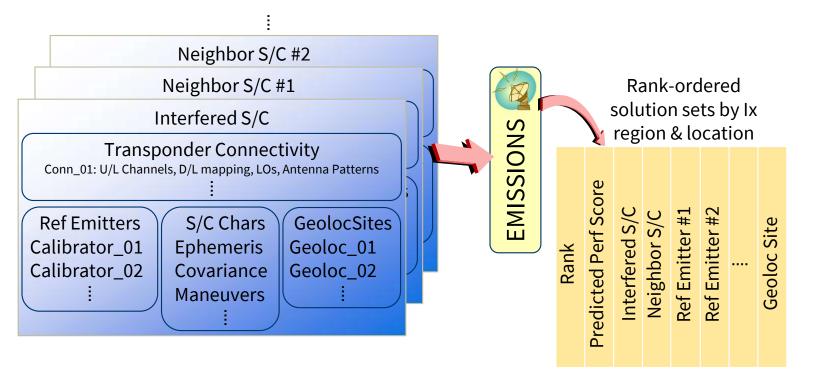
- Analyze an RFI event submitted by an SDC user
- Use knowledge of payload data for all satellites, to provide a ranked order of geolocation scenarios, to input into the user's geolocation system

Normalized RF Data & Approach

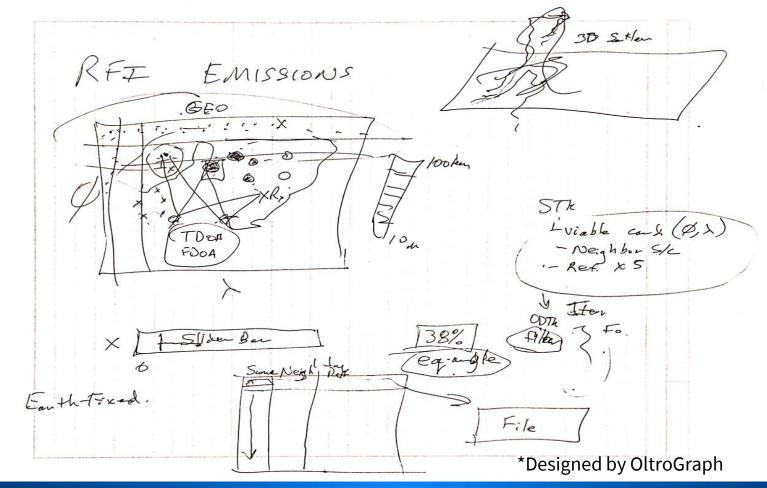
• Gathered relevant RF input data

- SDA/AGI developed standardized Excel templates
- Eutelsat, Intelsat, SES submitted payload RF data for handful of satellites
- AGI developed analytical software EMISSION for geolocation pre-computation

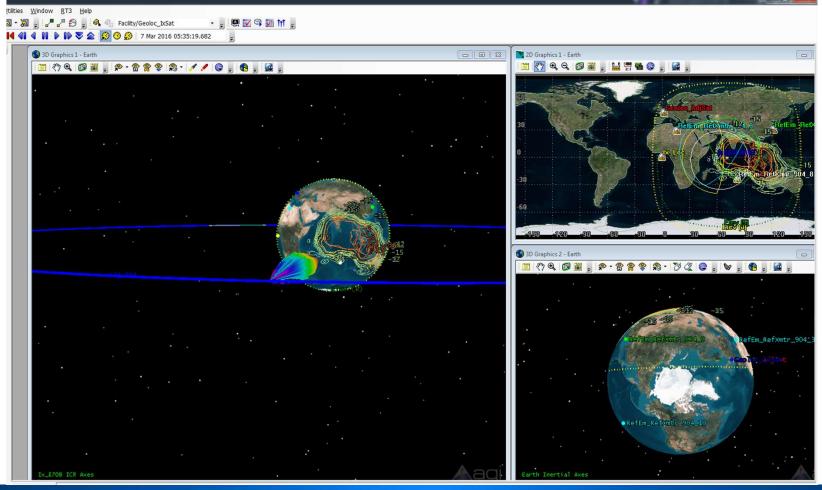
	Uplink Unique ID					Rx G/T Specification via .GXT File		p	Rx G/T Specification via Antenna Pattern			
Uplink Channel ID/Name	Uplink Beam Name	(e.g. Composite of Beam	Uplink Coverage Region	Uplink Center Freq	Uplink Polarization		Offset to get Beam G	/T (dB/K) Rx Anter	nna Pattern Filename	Offset to get Beam	G/T (dB/K) An	tenna mount biases
		and Channel IDs)	(e.g. North America)	(MHz)	(H, V, LC, RC, LE, RE)	Rx .GXT Filename	G/T = Rx GXT + G/T	Offset		G/T = Rx Gain + G/	T_Offset Az bia	s (deg) El bias (deg)
Downlink Unique ID					Downlink Transponder			EIRP Specification via .GX		Tx EIRP Specification via Antenna Pattern		
ownlink Transponder ID/Nar												
	and	Transponder IDs Local Osci	llator IQ (e.g. North America	n) (MHz)	(Mbps) <mark>heludir</mark>	ng guard band <mark>i, V, Ll</mark>		EIRP = Tx Gain		EIRP = Tx	Gain + EIRP_Offset	Az bias (degEl bias (deg)
Active Uplink Unique ID							Transponder Mode		SFD			
			nk Unique ID Co	ID Connected Downlink Unique ID			(Choose either		(max Gain)			
						FGM, AL	C, MUTE or OF	F) dB₩/m*2	2 @ G/T=0 dB	IK		
		Site Locati	on (WGS84 Date	um)	Transmit EIRP		Freq Range		Reference Emitter Uplink			
	Site Name	Latitude I	ongitude A	ltitude	Equiv. Parab	Power	Center Free	q Bandv	vidth	Polarization (Rcv'd at S/C)		
		(+deg E)	(+deg N)	(m)	Dish Dia. (m)	(dBW)	MHz	MH	łz	(H, V, LC,	RC, LE, RE)	
Site Location (WGS84 Datum) Geolocation Antenna Params Gelocation Site Frequency Ranges (Enter "0" for Low and High if band not sup									nd not supp	oorted)		
Latitude Long	Latitude Longitude Altitud		Equiv. Parab System		C-band		X-band?		Ku-band?		Ka-band?	
(+deg E) (+de	eg N) (m)	Dish Dia. (n	n) Noise (dBK)	for Geoloc	Low (MHz)	High (MHz)	Low (MHz)	High (MHz)	Low (MHz)	High (MHz)	Low (MHz	High (MHz)


EMI Solution Set Identification of Optimal NeighborS (EMISSIONS_{TM})

- EMI is chief concern for operators of satellite communications systems
- RFI mitigation initiatives
 - Inter-operator satellite operator Carrier ID Database
 - Equipment install training/cert programs
 - Geolocation of interfering signals
- Constructing a geolocation "Solution Set" w/normalized inputs can take days to weeks
- "EMISSIONS" Tool could construct an optimized solution set in minutes
 - Authoritative ephemerides + maneuvers + RF data + antenna patterns + aggregate reference emitters + geolocation sites + STK & ODTK under the hood


EMISSIONS Tool

- SDA is ideal trusted framework for behind-the-scenes RF analytics such as "EMISSIONS"
- Large quantity of proprietary RF data required:



EMISSIONS Process Flow

Complete specificity of S/C RF is foundational to EMI mitigation

www.space-data.org

Current status

- EMISSIONS prototype completed...
 - EMISSIONs now exists in prototype form, producing "heavy" STK Comm objects for full RF analysis based on operator-provided RF parameters
 - EMISSIONS employs ODTK TDOA/FDOA filter to parametrically evaluate geolocation performance at interference sites
 - EMISSIONS does not have graphical display yet.
 - EMISSIONS capable of producing solution sets

• But then:

- Discovered that the "Object Model" I'd employed in 2015 was simply too slow to do the sort of parametric evaluations and optimization that EMISSION was designed to do.
- Since then, ANSYS Components library developed to perform this functionality much faster.
- COMSPOC is developing relevant RFI assessment libraries.
- Could now explore suitability of implementing using Components
- COMSPOC willing to discuss today's utility with SDA member RFI Level 2 SMEs

